
Comparing Two Jar Files for Similarities
Yan Gao

Carleton University
1125 Colonel By Drive

Ottawa, Ontario, Canada
+1-613-523-4881

ygao@connect.carleton.ca

Hardik Patel
Carleton University

1125 Colonel By Drive

Ottawa, Ontario, Canada
+1-613-255-6450

hpate2@connect.carleton.ca

ABSTRACT

In this paper, we describe a testing system to determining the

percentage of similarity of two JAR files (or Java Archive). The

system generates the digital fingerprints of two Jar files’ under a
particular algorithm, then reports the result of the comparison of

the two fingerprints, which refers the similarity of the two Jar

files. The fingerprint information is represented in the string

form, so the comparison is based on string comparing method.

The result is reported as a percentage of similar with some
comments.

General Terms

Algorithms, measurement, documentation, performance, design,

reliability, experimentation, security, standardization, theory,

legal aspects, and verification

Keywords

Open Source Software, JAR file, digital fingerprint.

1. INTRODUCTION
As computer technique developing, the computer users can find
various kinds of software. Comparing with some closed source

software1, open source software becomes more and more

popular.

As its name, open source software’s important source and recipe

for making the software is opened to the users. Many users
choose to use open source software not only because it is free,

but also it is easy to make changes. In this way, some

programmer can make some changes based on other open source

software, and share with other users.

 However, not all licenses allow users to use or modify the open

source software, or some users share the software pretending as

they wrote it. Under these conditions, it is necessary to check

whether the two programs are the same or have the same part.

[1]One way to check the two programs is by checking their JAR
files. It works on the JAVA based programs.

JAR (or Java Archive) file is a file format packaging many files

into one file; it has the ZIP file format. Since one JAR file can

be

1 Closed source software is developed by a single person or

company, only release the final product, all the important

source code or recipe for making the software is kept a

secret.

distributed in the form of classes, metadata, and other resources
such as text, images and so on, the software developers can

extract one JAR file instead of getting many files to distribute

the JAVA application or library. [2]

It is complex to compare two JAR files, since the JAR file is a
package of many files. If the mechanism extracts two JAR files

and compare each files, it need a lot of cases to consider and too

many file types to handle. Sometimes, we define two programs

are similar is not only based on the point they have the same

code or contents, we may think more about the two programs’
structures.

If a JAR file is unique, it must have some features which can

distinguish from others, these features as the fingerprint of the

JAR file, which is a digital fingerprint. Digital fingerprint is a

unique coded string. It can identify a data file, and is generated
by some mathematical algorithms. By such property, we can

compare two JAR file by comparing their digital fingerprints. If

two files have the same digital fingerprint, they are with 100%

percentage of similar. In the converse, the digital fingerprint can
be generated, and can be extracted to some information for

comparing with other digital fingerprints.

The paper will describe this testing system to determine the

similarity between two JAR files. It works based on comparing
the two digital fingerprints, which contain the information of the

JAR files. The fingerprint takes the manifest file information,

how many folders and files in the Jar file, the class file’s

information, and the whole structure of the Jar file. All these are

generated following a format string, then the system comparing
the strings to know the similarity between the original JAR file

and the duplicate one. After the step of comparing, the system

reports the percentage of similarity between the two JAR files.

2. PROJECT COMPONENT
This project has three main components, which are JAR file,
fingerprint generator detector and fingerprint result.

2.1 Jar File
Since a Jar file contains several types of files, when we extract a

Jar file, we can see class files, java files, a Manifest file, maybe

other types such as .txt files, xml files, etc. Some of them can be
considered in this project, since they are involved in the

comparison, such as the manifest file, the class files, and the

java files. The other types of file do not really matter because it

is hard to generate the information for those files and the

information does not really matter to the similarity of the two Jar
files comparison.

For this project, the Jar files may be the Eclipse plug-in, or other

application Jar files. But no matter the type of Jar files, the

system deals them in the same way.

2.2 Fingerprint Generator Detector
The fingerprint generator detector is the most important part of

this project. It works in the routine:

1. It takes an original Jar file, generate its digital
fingerprint;

2. Then user passes another Jar file to it, the fingerprint

generator detector generate the second file's digital

fingerprint;

3. The fingerprint generator detector compares the two
digital fingerprints, calculates the percentage of

similarity, and then report result of comparison.

Basically the step of generating the digital fingerprint is an

algorithm which includes two parts: one part is to conclude the
information of the Jar file into a string, and the other part is to

encode the original string into an unreadable form. These two

methods will be described in the next section.

2.3 Fingerprint Object
In this project, the fingerprint object is defined by us. It contains
three entities, which are ID, Jar file name and the encoding.

ID is the Identity of the fingerprint generator detector which

defined by the programmer. It is used to determine which

fingerprint generator detector is used for this fingerprint. So

when to check two fingerprints are same or not, we should check
the ID first, if the two Ids are same, it continues and if they are

not same, that means the fingerprints generating under different

algorithms, which means there is no use in comparing those two

Jar files.

Jar file name determines which Jar file corresponds to the
fingerprint. It can also be used for the fingerprint's ID since it is

unnecessary to make an extra name for each fingerprint; it is

easier just keep the Jar file's name to identify the fingerprint.

Encoding is a string which stores the information of the Jar file.
It is generated by the fingerprint generator detector under some

algorithms. It contains the information such as: number of files,

number of folders, manifest file's information, and class files

structure. All this information are gathered by the fingerprint

generator detector, and encoded by a mathematical algorithm
into an encrypted format. When the ID matches, the comparison

is working based on this entity.

2.4 Fingerprint result
As its name, fingerprint result is a kind of report of the

comparison of two valid fingerprints. It is generated by the

fingerprint generator detector as well. One of its entities is the

percentage, which is a float number range in 0 to 100. It
determines how similar the two fingerprints are, and then we can

know how many common properties the second Jar file has with

the original one. The other entity is the comments, which

records the comments of the comparison, it can be seen as a

proof why we get the percentage number, and how it is
calculated. It can be discarded since it is used to assist

understanding the comparison steps, and it does not affect the

result if it is not updated.

3. PROJECT DESIGN
The project is consists of four main steps. First, the system gets

the useful information of the JAR file; then in the second step

the system transfers the information into a tagged string,

encrypts the string and stores it as the input JAR file’s digital

fingerprint; the third step is the comparison step, where tow
fingerprints created in previous steps get compared; and in the

last step the result of comparison is shown.

3.1 Getting Jar File Information
Most of the time, a JAR file contains a manifest file, the class
files, and sometimes images, sound resources. For generating

the digital fingerprint, the images and sound files are not that

important, since they do no matter about the structure of the JAR

file, thus such files are discarded from being included into

fingerprint. What we are thinking about is the manifest file and
the class files.

The first to be considered is the number of folders and files in

the Jar file. Since the JAR file has the same format as the ZIP

file, we can extract the JAR file using the same way as to extract
a ZIP file. In JAVA, the easiest way to count the number of

folders and files is to use the function “isDirectory()”, and it is

allowed to convert a JAR file to ZIP file. In this way, the JAR

file is treated as a ZIP file, and enumerated all its entries, then
the program checks each entry using the function

“isDirectory()”, if the answer is TRUE, the folder counter

increases 1, otherwise the file counter plus one.

If a JAR file is executable, it should have a manifest file to
determine how to use the JAR file. The manifest file is optimal

existing depending on the JAR file is executable or not, but if

there exists one, it is usually located in the path META-

INF/MANIFEST.MF and declares the “main” class. [3] Since

the information in the manifest file is used for executing the
JAR file, if the two JAR files have the similar information, it

should be similar in some way which can be use to determine if

two JAR files are same or not. To access the manifest file, first

we need to locate the file from all the JAR entries, to realize the

function, we analyze the strings of the entry names, if the name
string is ended with “.MF”; the file is the manifest file. The

JAVA platform allows getting the manifest file and the program

parse the manifest file’s content as strings.

The third thing we can get from the JAR file is the class files
information. To access the class files, we use the same method

as to get the manifest file, checking the name which is ended

with “.class”. If the file is a class file, we can get some general

information of it, such as the name, number of the methods and

variables, enumerate the methods and variables, its hash code,
source file, super class, and so on. From these data, we can get

the structure of the class, if the two classes have the same

structure, then they are the same.

3.2 Encoding
From the previous step, we get all information we need to

generate the digital fingerprint. In this step, we need to encode
the data into a format string.

Considering the comparing part, the data should be stored in an

organized format. For ease of understanding, all data gets

separated in following manner: all categories are separated with
each other using the string “,,,”. In each category, we declare its

name ended with a symbol “*” then followed the content of the

category. For example, the folder number and the file number

are stored in the string as the following style:

“FOLDERS*x,,,FILES*Y,,,”.

On the other hand, the data of manifest file and the data of class

files are not that simple, they may contain more than one

attributes, it is necessary to make each attribute clear. If the

symbol “,,,” is considered as the first level separator, then we
need to make a second lever separator to make the attributes

separate to each other. In this case, we use the symbol “^”.

By using this method, we can group all the data into a string and

separate easily. When the two fingerprints are compared, the
system takes the data in the same category and checks the

similarity. Generally speaking, the encoding step is to organize

the data into an easy encoding and decoding format, the symbols

to separate the information should be the symbols which never

exists in the data, otherwise the system cannot get the correct
data.

After encoding step, the system creates the JAR files fingerprint

as a fingerprint object, marks the object the ID which defines the

producer of the system, the JAR file’s name and the string of the
information as the content of the fingerprint.

3.3 Comparison
The comparison step is one of the main tasks of this project.
Once the second JAR file is selected, the system generates its

fingerprint, and then compares with the original JAR file’s

fingerprint automatically.

Basically, comparison is happening between two fingerprint
objects. So first of all, the system should check the two

fingerprints’ ID. As mentioned in previous section, ID is used to

determine the producer of the fingerprint. If the two IDs are not

same, that means the two fingerprints are not generated under

the same method, there’s no way to check the different format
fingerprint. Since the system can only handle the fingerprint

encoded under its own method, if a fingerprint’s ID does not

match to the system’s ID, the program reports an error.

In the fingerprint object, there is an attribute of JAR file name.
In this step, the JAR file name is not considered. Since

sometimes, two JAR file may have the same name, but the

contents are different.

If the IDs are valid for the system, we can compare the
fingerprints of the two JAR files. First, the fingerprint strings are

decoded into data. For this part, the program is using

“StringTokenizer()” to separate the fingerprint into each

category, if the categories, for example manifest and class, have

some attributes or sub-categories, using the same way but

different separator to refine the information. After the decoding
step, we restore the JAR files original information which is

needed to be compared.

In this project, there are three cases to be thought about.

First, the number of folders and the number of files get

compared. If the two files are exactly same, these two numbers

should be exactly same. But conclusion cannot be determined

here since two different JAR files could have same number of

files and folders. Thus, result of comparing these two numbers
represents 10% weight each out of total weight.

Second case is to compare the manifest file. As we mentioned

before, manifest file stores the information to execute the JAR

file. We compare each attributes of the two manifest files, if the
same attribute’s contents are same, then the similarity

percentage increases. In this part, if the two files are exactly

same, the total similarity percentage increases 30%. For

example, if there are n attributes in total, and m attributes are

matching, the percentage should be (30*m/n) %. For this
formula, if m=n, the percentage is 30%; if m=0, the percentage

is 0%.

The third one is the class files information; it takes 50% of the

total similarity percentage. In section 3.1, we get the information
of each class, such that the name, the number of methods,

number of variables, source file, super class. If two class files’

five data are matching, we say they are the same. In this project,

we check the second JAR files class files one by one, if in the

first jar file, there is a class matching, the counter increase. So if
we define the number of matching class files is m, and there are

n class files in the first JAR file, the percentage should be

calculated like: 50*m/n%.

4. RESULT
The project runs in Java platform, the result of the project is
stored as an object named FingerprintResult. In this object, there

is a float number named percentage, which represents the total

similarity between the second JAR file to the original one. The

number is added up by the three comparing parts, which are the

number of folders and files, the manifest file similarity and the
class files comparison. If the total number reaches 100%, the

second JAR file is exact the copy of the original one.

There is another attribute named comments, which is an

ArrayList storing strings. These strings are added along with the
comparison step, used to explain the reason that the system gets

that result at that step. It does not matter the final result, just for

the additional explanations.

5. CONCLUSION
In this project, we produce a testing system to checking two JAR

files’ similarity, based on the string comparison. It generates the

fingerprint of the input JAR files, and compares two
fingerprints, reports the percentage of two fingerprints similarity

which can represent two JAR files similarity.

So far the system just works on the comparing the basic JAR

files’ information. It still has some problem on the comparing

step, for example, the manifest files have some co mmon
attributes, in this project, they are counted as the similarity, but

for the more precise result, they should be discarding. Also for

the class checking part, the JAR files’ structure is also an

important part in the comparing.

6. REFERENCES
[1] Science in Africa. (Jan. 2004), DOI=

http://www.scienceinafrica.co.za/2004/january/software.ht

m.

[2] JAR(file format). (Nov. 2010), DOI=

http://en.wikipedia.org/wiki/JAR_(file_format).

[3] Manifest file. (Oct. 2010), DOI=

http://en.wikipedia.org/wiki/Manifest_file

http://en.wikipedia.org/wiki/JAR_(file_format)

